Central Limit Theorem and the Distribution of Sequences
نویسندگان
چکیده
منابع مشابه
Central Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملthe role of russia in transmission of energy from central asia and caucuses to european union
پس ازفروپاشی شوروی،رشد منابع نفت و گاز، آسیای میانه و قفقاز را در یک بازی ژئوپلتیکی انرژی قرار داده است. با در نظر گرفتن این منابع هیدروکربنی، این منطقه به یک میدانجنگ و رقابت تجاری برای بازی های ژئوپلتیکی قدرت های بزرگ جهانی تبدیل شده است. روسیه منطقه را به عنوان حیات خلوت خود تلقی نموده و علاقمند به حفظ حضورش می باشد تا همانند گذشته گاز طبیعی را به وسیله خط لوله مرکزی دریافت و به عنوان یک واس...
15 صفحه اولCentral Limit Theorem and Almost Sure Central Limit Theorem for the Product of Some Partial Sums
Let (Xn)n≥1 be a sequence of independent identically distributed (i.i.d.) positive random variables (r.v.). Recently there have been several studies to the products of partial sums. It is well known that the products of i.i.d. positive, square integrable random variables are asymptotically log-normal. This fact is an immediate consequence of the classical central limit theorem (CLT). This point...
متن کاملThe Martingale Central Limit Theorem
One of the most useful generalizations of the central limit theorem is the martingale central limit theorem of Paul Lévy. Lévy was in part inspired by Lindeberg’s treatment of the central limit theorem for sums of independent – but not necessarily identically distributed – random variables. Lindeberg formulated what, in retrospect, is the right hypothesis, now known as the Lindeberg condition,1...
متن کاملThe Lindeberg central limit theorem
Theorem 1. If μ ∈P(R) has finite kth moment, k ≥ 0, then, writing φ = μ̃: 1. φ ∈ C(R). 2. φ(v) = (i) ∫ R x edμ(x). 3. φ is uniformly continuous. 4. |φ(v)| ≤ ∫ R |x| dμ(x). 1Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, third ed., p. 515, Theorem 15.15; http://individual.utoronto.ca/ jordanbell/notes/narrow.pdf 2Onno van Gaans, Probability measu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tatra Mountains Mathematical Publications
سال: 2020
ISSN: 1210-3195
DOI: 10.2478/tmmp-2020-0031